Last Orders On RMS Titanic

Credit Shutterstock

28 March 2019. On 14-15 April 1912 RMS Titanic vanished near the Grand Banks of Newfoundland. Over the next few weeks I look at the ‘Event Cascade’ of reasons why.

When people ask the question, “What sank Titanic?” at first sight, the answer is obvious. It hit an iceberg – how complicated can it be? But that simplistic answer masks deeper and more substantive question: Why did Titanic sink so quickly?

It is a mistake to regard Titanic as somehow primitive.  She was the most modern ship of her day, in a world that relied on its steam trade to maintain communications between Europe and America in the same way that today we rely on aviation. Titanic incorporated the latest technological innovations of the age to help ensure its safety. For example, it was the first ship to have sealable, watertight bulkheads with electrically operated doors that could be closed from the bridge at a moment’s notice. The hull was made of steel and was held together in the middle three-fifths of the ship’s length by steel rivets. She carried the latest Marconi wireless equipment, with a 5000 W transmitter that gave it a range of five hundred kilometres.

On the face of it the human factors were stacked in Titanic’s favour too. She had the most experienced crew of the entire White Star line on board for her maiden voyage, who were commanded by the White Star line’s most experienced captain, Capt E. J. Smith, the Commodore of the Line.

It is also worth noting that the North Atlantic run was very far from being an unknown quantity in the Edwardian era. It was as busy as the air route between Europe and America is today, and the chances of seeing a fellow ship en route were as high as an air traveller seeing a fellow aircraft today.

But the simple truth is that against all odds and expectations, including those of the ship’s designers, Lord Pirie, of the Harland and Wolff shipyard, and Thomas Andrews of the White Star line itself, Titanic sank as fast and completely as a stone, less than three hours after she had hit the iceberg. If she had stayed afloat a little longer then rescue ships could have got to her and tragedy been averted.

This is the real question of the Titanic mystery: How could a 46,000 ton ship sink so quickly? The answer is to be found within the science behind Titanic’s construction.

Watch this space for my trilogy of Titanic articles, coming soon.

The Future of Cities is Smart

23 March 2019 Just finishing off an article on sustainable cities. At its simplest this means a city that produced its own power, recycles its own waste and grows its own food. To imagine this properly we have to let go of a lot of preconceptions.

An essential ingredient to these sustainable cities will be AIs to make sure all the systems runs smoothly and correctly interact with each other.

All of which brought back memories of James Blish’s CITIES IN FLIGHT series where the cities, despite having an veneer of human control, were actually controlled by the City Fathers – giant AIs which over the millenia have accumulated a fantastic weight of wisdom and which are tasked with maintaining the safety of the city and its inhabitants at all costs.

Are we taking the first steps down that road already?

Synthetic Souls and Silicon Brains

21 March 2019. I am currently wrestling with an old problem and finding out that the huge literature that I assumed must exist – doesn’t.

Credit Shutterstock

Some years ago I was debating the difference between brain and mind with my friend and colleague Professor Steve Simpson (now Head of Zoology at the University of Sydney). We both agreed that mind was almost certainly an ’emergent’ product of the number of neurons in the brain and the number of potential connections that they can make. Technically this phenomenon is known as exaptation – a term coined by Steve Gould and Richard Lewontin to describe structures that arise in the body as a by-product of more orthodox adaptive processes.

My literature research has done nothing to change my mind, but to date two inescapable facts seem to be emerging. First, very few people seem to be tackling this problem and until we get an answer AI is still a pipe dream. Two, there is a qualitative divide between a superfast computer – even one that uses machine learning algorithms such as Deep Blue which beat Gary Kasparov (once) at chess – and a machine that thinks.

And as for soul, my working definition is that the soul is the sum of altruistic tendencies of the mind and their interaction. And no, the soul does not persist after death – how can it if the brain has stopped functioning?

I’m leaving this page open for comments and would welcome reasoned argument.

Richard’s eStore

17 March 2019 As you can see I’ve made progress with my eStore. My next step is to collect my stories into three series of titles, THE RESTLESS SCIENTIST (Scientific and Medical Essays),  TALES OF SCIENCE AND IMAGINATION (Thank you Edgar Allen Poe for inspiring the title! These are my slightly freaky-deaky science short stories), and KATZ ARE MY KRYPTONITE (my homage to the most civilised animal taxon on this planet – the cats).

There will be about six chapters to each title and as I write more these stories and essays will be showcased on the site and then collected into a new title. That way you don’t find yourself buying the same essay or story twice. While I’ve been testing the system I’ve been using pdf’s of single stories but I’m  now moving to MOBI format where you can read my stuff on Kindles, Tablets or Phones. There will be artwork with each story, I have taken out a subscription with Shutterstock and use some of their images as the basis for my own creations.

There may even be audio books down steam.

I am experimenting here of course. In the old days I used to go the agent/publisher route but in the digital age that takes too long. Also, you don’t have two sets of editors to pay obiesance to before your readers even get to read what you were trying to say.

So please support me by buying my books. Ultimately, no doubt, I shall do a version for Amazon but not just yet – let’s see how far we get with this model.

eStore Now Working

16 March 2019 I love computers – they save so much time…

Anyway, after a fair amount of hassle I am delighted to announce that my eStore is open for business and all is working well.  It links straight to PayPal so you have all the peace-of-mind that confers. Once your funds have cleared you will automatically be emailed the download link. 

I will be populating the BUY  RICHARD’S WRITING  page with essays and stories over the next few days.

Please support me – so far I have paid for everything out of my own funds and a bit of help – you buying my writing – will help me keep the site going.

Any problems please email me at


14 March 2019 My essay THE SECRET LIFE OF WEATHER STATIONS now available for download on the Buy Richard’s Writing page. 

‘You don’t see them often now but in my youth they were very common, especially around airfields of which their was no shortage in Britain following the Second World War. A tidy sward of grass mowed to millimetric perfection and so flat it made the average bowling green look like the foothills of the Andes. In the middle a white box with slats, to one side a thick copper pipe sticking out of the ground, a small mesh work tower surmounted by rotating cups and crowned by a arrow with a vane at one end.

By and large this lawned area is quiet. the peace broken only by the drowsy drone of bees. The smell of clover hangs thick and sweet upon the air. But just occasionally the peace is shattered by the distant roar of an aircraft engine under full power and for a second the whiff of kerosene can be tasted on the air. Eventually the roar will be supplanted by the scream of jet turbines but even then the stations remained. Tended by quiet men in baggy slacks and sleeveless cardigans, always with a tie, a notebook and a preoccupied look. For
these were the weather men and the sward of grass they tended was
home to the local weather station…’

Jurassic Lark

1 March 2019 It’s the time of year to think of where to go in the Long Vacation (do writers have holidays? The short answer starts with N and ends in O). I have decided that I am going to investigate the geology of the Cotswolds. This means in effect that I am going to open my front door and turn left.

W. S. McKerrow while President of the Palaeontological Association. Credit Palaeontological Association

I was introduced to the area by the very wonderful W. S. McKerrow back in the late 80’s and in amongst the maelstrom of being a professional scientist never really deepened my understanding of the area. That’s about to change. I no longer have to drag a ton’s worth of mass spectrometer around with me to ‘do’ science, instead I will use the old fashioned tools, my eyes (properly protected with goggles I add hastily – something that you can pick up for a quid or two at Screwfix.)

I have just paid the deposit on my hols; £10.01 for an old copy of McKerrow’s Geology of the Cotswold Hills (Published by the Geologists’ Association in 1964, when I was two)

I shall be writing of my adventures in future instalments of this blog but since the rocks are of Jurassic Age I am expecting quite a bit of scientific excitement – even if it is only the excitement of rediscovering what my geological heroes already knew.

‘Scientists spend so much time wondering if they COULD do something they don’t wonder if they SHOULD do something.’ American actor Jeff Goldblum as Dr. Ian Malcolm in a scene from the film ‘Jurassic Park’, 1993. (Photo by Murray Close/Getty Images)

You could call it a Jurassic Lark.

In the meantime lots more writing coming up and news of my first book in a while.

The Best Bang Since The Big One

Did you just see a real bright light? Credit Shutterstock.

25 February 2015. A new debate has erupted (sorry!) about the role of volcanism at the Cretaceous-Palaeogene boundary. Lest you think this is a new idea let me tell you that it has been around for 35 years. Read on…!

The Best Bang Since the Big One (with apologies to Douglas Adams and Eccentrica Galumbits)

Richard Corfield

Abstracted from my book Architects of Eternity available on Amazon here

The Cretaceous-Paleogene boundary (K-Pg) used to be known as the Cretaceous–Tertiary boundary and was commonly abbreviated to ‘K–T boundary’. The ‘K’ comes from the German ‘Kreide’ meaning chalk, for

chalk, as we have seen, is a common sediment of the Cretaceous. The ‘T’ stands for Tertiary – the third era of life’s history.

And yet it was not as though Walter Alvarez had not already been working in the Bottaccione area for years. He and fellow post-doc Bill Lowrie, both of them from the Lamont–Docherty Geological Observatory of ColumbiaUniversity in Ithaca, New York had contributed to some seminal work in this area. Like several other geologists in the seventies, they had become interested in the remarkable limestones of the Bottaccione Gorge. The limestones are remarkable because they were deposited in the deep sea – they were not shallow-water limestones like those that outcrop on Wenlock Edge. These limestones are different, deposited in about the deepest water you can get and still find fundamentally undissolved.

They soon discovered that another group, led by the legendary Al Fischer of Princeton as well as Mike Arthur and Isabella Premoli-Silva, were working on the very same question and by combining forces they produced a seminal memoir on the geology of the gorge. Originally it had been the happy conflation of decent foram stratigraphy and palaeomagnetics that had led geologists to the Bottaccione Gorge. But it was clay horizon at the K-Pg boundary that made them stay.

Walter talked the K–Pg time-duration problem over with his dad and it wasn’t long before the famous Nobel laureate had arrived at a solution. They would use Beryllium-10, an isotope that was formed in the upper atmosphere when incoming cosmic rays collided with oxygen and nitrogen atoms. The half-life (the time needed for half the original quantity to decay to another isotope) for Be-10 had been calculated as 2.5 million years. There would be enough Be-10 still left in the clay for them to measure what the original concentration must have been (assuming the rate of production in the upper atmosphere was constant). And then the whole concept came unglued – the half-life of Be-10 was recalculated and found to be only 1.5 million years – and that one-million-year difference was crucial. There would not now be enough Be-10 left in the clay for them to measure. The idea was abandoned.

But around about this time Walter was appointed to Berkeley where his colleague Rich Muller and his father were already on the faculty.

Help! I’ve got iridium between my legs! Credit Richard Corfield

The problem of the duration of the K–T boundary would simply not go away. And once again it was the father who had the idea, which was related to the Be-10 concept yet different. It was based on another uncommon element – iridium, a member of the platinum group of elements. Iridium is in short supply on the Earth’s surface. It has sunk into the deeper layers of our planet, the mantle and the core. A heavy metal, indeed. But, outside the confines of our own planet, iridium is in much greater supply as it is one of those primordial elements that was flung far and wide after the birth of the universe. Could significant quantities be dropping in a steady rain on to the earth? If so, the amount of iridium in the clay layer was at best going to be in the parts per billion (an American billion) range. To measure this small a quantity, cutting-edge techniques would be required. But on the Berkeley campus there was one man who they knew could help: Frank Asaro.

Asaro listened cordially when they diffidently approached him and then dropped a bombshell. He and a colleague were already working on something very similar, although their emphasis was on measuring the duration of deposition of fossil soils. However, if his co-author agreed, Asaro would be willing to make the measurements for the Alvarez team. A deal was struck and Asaro agreed to help. The technique Asaro was using to count iridium atoms was neutron activation analysis – and its minimum analytical requirement was nothing less than a nuclear reactor.

Neutron activation analysis works by irradiating samples. Neutrons from the reactor collide with the atoms in the sample and stimulate them to emit gamma rays. The electromagnetic spectrum of the resulting ray is as characteristic as a fingerprint and allows the various elements within the sample to be measured at levels down to parts-per-billion (ppb). The technique takes time however if the element being searched for is rare. It is not uncommon for samples to be irradiated for several months.

In this case the wait was even longer than usual for the universal scientific bogeyman – mechanical failure – had stopped by Frank’s lab and killed his machine. It was several months before it was back on line, and not until the early summer of 1978 when Walter got the summons from his dad, ‘Frank’s got the data!’ They attended, full of expectation – and their hopes were dashed. Their calculation was that at most, if the time represented by the Gubbio clay across the K–Pg boundary was their worst- case scenario of a few thousand years, they would expect to find 0.01 ppb of iridium in the rocks. Instead they found 3ppb – three hundred times theamount that they had expected. And after Asaro had realised that a mistake had been made in the chemical preparation of the sample, they discovered that they actually had 9ppb in the sample – nine hundred times the amount that they were predicting.

At moments like these in the life of a scientist your career boils down to two alternatives: either you have long drawn-out hair-tearing sessions in your office until your partner threatens divorce or separation, or you have long drawn-out drinking sessions in a bar someplace which continue until your partner threatens divorce or separation. The Alvarez team had to explain this high concentration of iridium. Either the iridium really did come from meteoritic dust and some extraterrestrial explanation was required, or there was some wrinkle in the way that iridium was deposited in sea water that nobody had yet thought of and the whole deal was a busted flush. To test this it was essential to try again, with another sample. Walter searched the literature for another complete K–T boundary section. Denmark was the only other obvious candidate.

I’ve already mentioned the bar which nestles under the cliff halfway between Gubbio and the K–Pg outcrop in the Bottaccione Gorge. Yet this bar, even if you can find it when it’s open, is not the bar. For the nascent

boundary freak there is but one true bar, and that is the one true bar above the one true section, at Stevns Klint on the eastern coast of Jutland in the tiny hamlet of Hojerup. The bar above the cliff at Stevns Klint is a remarkable and supremely civilised place: a rambling, gabled building built in the Scandinavian summer-house style on stilts, whose wooden floor protrudes far out over the edge of the gently eroding chalk cliff that faces the strait between Jutland and Zeeland. The light Scandinavian beer here is as good as anything that you will find anywhere. The Carlsberg is a work of art. But there is also something eerie about the village of Hojerup.

There’s a stillness to the place as though it is somehow aware of the secret it guards. Go there in summer and this small Danish village slumbers in a limpid summer sunlight that you wouldn’t ordinarily associate with the Baltic states. Go there in winter and the rain falls in whispering sheets out across the strait towards southern Sweden. It’s so quiet that after a few moments you can hear your own heart beating – a few more minutes and you can hear somebody else’s – but there’s nobody there. No one except the solitary barman quietly polishing glasses in the otherwise deserted bar and the hum of the chiller cooling the Carlsberg. The Bottaccione Gorge has a similar quality, a place strangely out of time, where the clay layer at the K–T boundary sleeps between its enfolding limestone ribs. For anyone with any knowledge of palaeontology and any form of empathy these are places of ultimate endings – and beginnings.

Walter must have felt the same thing when he made his first visit to Stevns Klint in 1978. The mission was critical – they knew that if they could not find the iridium anomaly in the Stevns Klint section then they could not prove that the iridium anomaly was at least regional (they were hoping of course that it was global). And in that case, even if they replicated the measurements from Gubbio and came up with the same answer then the likelihood was that the iridium anomaly at Gubbio would turn out to be no more than some strange artefact of sea-water chemistry that might be worth some short article in Geochimica et Cosmochimica Acta, but would not be the stuff that Science articles are made of.

The Stevns Klint material did not look at all like the Bottaccione material. This layer was thicker and  blacker and the surrounding rock was friable chalk, not hard limestone alternating with marl bands. This was no surprise to the Alvarez team since any time-equivalent material from the geological column can be
expected to have a different aspect according to the different places that it is found. The rock type depends to a large extent on the environment that it was originally laid down in – the facies or environment of deposition – which will vary according to whether the sediment was laid down in the deep
ocean, a shallow sea or on land. Also, sediments are almost always more or less modified from their original state by the many different diagenetic processes that have occurred during their long passage across the millennia.

A picture from our special correspondent. Credit Shutterstock.

The only other credible idea was that the killer was an asteroid which had hit Earth bringing with it sufficient iridium to create the anomaly. But the details of the killing mechanism would not stand up to scrutiny. How could a simple impact, no matter how large, kill off a large percentage of the life on Earth? There was no easy answer. Walter returned, dispirited, to his palaeomagnetic work in Italy. In California however, after a lifetime of pugnacious tenacity, Luis was not ready to give up. He remembered an encounter he had had with an obscure Royal Society publication on the eruption of Krakatoa and the dust pall that had surrounded the globe after the detonation of that corked volcano. And so the idea of the K–Pg winter was born. A dust cloud surrounded the world in the immediate aftermath of the K–T impact event and decreased light intensity to a level where photosynthesis on land and in the oceans was halted. Cut off the fuel and the engine will die – and photosynthesis is ultimately the fuel that powers the world.

The K–Pg boundary and the death of the dinosaurs became front- page news. The old adage of uniformitarianism was finally overturned by the resurgence of the old notion of catastrophes as major turning points in Earth’s history. And this time the architects of eternity were an ambitious young geologist, a physicist and a couple of chemists.

This was a major turning point. The old order – with its unhealthy preoccupation with gradualistic notions – was finally defeated, going over the next several years not gently (in fact fighting tooth and nail), but going nonetheless, into this good night. The hard realities of an outside scientific world where analytical technology and numeracy reigned supreme had scaled yet another of classical palaeontology’s last bastions.

The palaeontological establishment split rapidly into several camps: those who could not accept the idea on any grounds, particularly the older generation whose uniformitarian roots were too deep to shift; those who did not like the idea because they found the evidence unconvincing; and those who loved the idea because it was novel and had a dangerous frisson of cataclysm about it.

In the aftermath of the Alvarez paper, it became clear that they had succeeded in priority of publication only by the skin of their teeth. A Dutchman, Jan Smit, was on their tail with his own story of noble metal enrichment in the K–Pg section at Caravaca in Spain and almost simultaneously other groups confirmed the iridium enrichments in Denmark and New Zealand.

There was in those days – and to an extent there still is, at least among certain die-hard sectors of the palaeontological community – a feeling, so deep that it is never spoken of, that palaeontology should only be practised by those who disdain the vulgar requirements of high technology. These, of course, are the practitioners of the old palaeontology.

Luis Alvarez bounded into the fray with enthusiasm. He and Walter fought hard to gain acceptance of the theory among the reactionary old guard, yet really never made much progress, their success being with the younger members of the community. It was they who went to seek out other boundary sections in a variety of different depositional environments.

Early notable finds by these new acolytes of apocalypse were Carl Orth and Chuck Pillmore who together found several sections in a non-marine depositional environment in New Mexico interpreted as a fossilised coal swamp.

One healthy development that arose very quickly after the new era dawned was the Snowbird Conferences. The first was in the early eighties in Snowbird, Utah (hence the name). The conferences were designed to be interdisciplinary and to allow astronomers, astrophysicists, physicists, chemists, biologists and palaeontologists to learn each other’s language.

During the eighties the K–Pg community – and by about 1985 it seemed that almost every university geology department in the Western world had at least one researcher working on the boundary, such was its importance – was focused on finding the impact structure itself, what Walter Alvarez has called the ‘Crater of Doom’. (See Walter’s book T. Rex and the Crater of Doom (Penguin, 1998) for the full details of the K–Pg story and the hunt for the impact structure.)

But the camp of what we may call the scientific unbelievers had found a suspect of their own which could also account for the iridium anomaly.


Iridium may be a material of the solar system, but it is also a material of the inner earth – the mantle and the core. It was too heavy to hang around on Earth’s crust as it cooled and stabilised and instead sank into the depths of our planet. Quite soon after the Alvarez paper had come out, a group of geologists in the States realised this and understood further that the iridium enrichment could therefore be interpreted quite differently. On the face of it, the Berkeley group’s asteroid theory seemed plausible, but the iridium could also have risen to Earth’s surface via volcanic vents. Dewey McLean at Virginia Tech was among the first to suggest that the iridium anomaly at the K–T boundary could have been caused by volcanic activity and then the idea was taken up and championed by Chuck Officer and Charles Drake of Dartmouth College, New Hampshire. These three proposed that the iridium had come from the centre of our own planet via volcanism – and lots of it.

The west of India is covered by a fossilised sea of basalt. This is an igneous rock, which is to say it is one of a group of rocks that are formed by material coming from the mantle and core. And this igneous rock is of a singular age. On the basis of the existing radiometric dates, the Deccan Traps were known to be approximately the same age as the K–Pg boundary. Officer and Drake reasoned that the volcanism that gave rise to this enormous flood of basalt (covering an area as large as France), would have been sufficient to bring enough excess iridium up from the Earth’s core to account for the iridium anomaly at the K–Pg boundary in the Bottaccione Gorge (and at the other sections around the world where it was rapidly being found as the asteroid impact scenario gained momentum). As radiometric dating of the Deccan Traps continued, pursued most energetic- ally by the French geophysicist Vincent Courtillot, it became clearer and clearer that this remnant of an extreme volcanic episode was indeed contemporaneous with the K–Pg event.

By the mid-eighties the development of a palaeomagnetic reversal stratigraphy (see Chapter 3) had extended all the way back into the Mesozoic and was well-integrated with absolute dates as well as global biostratigraphic datums based on planktonic forams and calcareous nannofossils. This integrated scheme is known formally as the ‘Geo-magnetic Polarity Timescale’ but is usually (and mercifully) shortened to GPTS.

Normal and reversed intervals are given numbers. The K–Pg boundary occurs within reversed polarity interval 29 – or Chron 29R. Courtillot’s dating of the Deccan Traps (the word ‘trap’ by the way comes from the Scandinavian term trappa, which means stairs) showed that they spanned three polarity intervals – from the top of Chron 30N to the beginning of Chron 29N, encompassing Chron 29R and corresponding to an interval of somewhat less than a million years. This was strong evidence in favour of the volcanism hypothesis which was particularly strongly championed in France, in part perhaps, because of Courtillot’s high profile among the French scientific-political establishment.

Where did this new support for a volcanic cause for the K–Pg extinctions leave the Alvarez scenario? The problem was that the Berkeley group were continuing to be embarrassed by one huge missing piece of evidence – the impact crater itself. There were some early red herrings – the Manson crater in Iowa was investigated but found to be the wrong age.

Then the search turned to the ocean. Tiny spherules of a mineral called sanidine had been found in K–T boundary sections in Spain and Italy and a young Italian geochemist called Alessandro Montanari, who had gone to Berkeley to work with the Alvarezes for his PhD, deduced that this was the alteration product of the original minerals olivine, pyroxene and calcium- feldspar. This suite of minerals is characteristic of oceanic, not continental crust. The Alvarez group, on the basis of this geochemical evidence turned their attention to the ocean. They knew that there was a good chance (about 25 per cent) that this search would be fruitless because the sea floor is being continuously consumed at the continental margins in areas known as subduction zones. And so, very early on, the Alvarez team made an assumption that the crater had been subducted and stopped looking for it because they believed that it was no longer there. This in turn meant that for all of the eighties the question of volcanism versus impact went unanswered.

That question was answered when the Chicxulub impact structure on the Yucatan Peninsula was dated as being precisely the same age as the K/Pg boundary in the 1990’s.